If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.0855t^2-0.912t+1.774=0
a = 0.0855; b = -0.912; c = +1.774;
Δ = b2-4ac
Δ = -0.9122-4·0.0855·1.774
Δ = 0.225036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.912)-\sqrt{0.225036}}{2*0.0855}=\frac{0.912-\sqrt{0.225036}}{0.171} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.912)+\sqrt{0.225036}}{2*0.0855}=\frac{0.912+\sqrt{0.225036}}{0.171} $
| 7x+9=-2x+90 | | 92=8+(3a) | | 2k=-8k-6k | | 28n-7-16=8 | | x2+7x=0 | | 1/6x+9/x*3+8=0 | | 3(v+2)=-2(5v-8)+9v | | 1/4(6x-4)=10 | | 7x/2=5/4 | | -85=3(-6n-5)+8 | | 4x-16=2/3 | | x/7=x-16/2x-20 | | -9x+22=-7 | | 2y-51=10y-59 | | x-7/9=-1/12 | | x÷5=-26+16 | | 1-7x=-13-5x | | x^2+3x+19=17 | | X-3x=2(4+x) | | 4(2x-8)+6=-90 | | 1-7x=-135x | | 16=7+(3a) | | 1/3(²x-1)=3 | | 8-m+m=-1+3m | | -7x+4=1-8x | | 4x+4=x-29 | | -5(u+4)=9u+22 | | 6-2x=5x9x+18 | | 8=4k-1/2 | | (a+26)^-3/2=1/729 | | (5x-19)=5x-19 | | 4x2+6x=9x2-15x |